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Abstract

The purpose of this paper is to obtain a fractional Black-Scholes formula for
the price of an option for every ti [O,T], a fractional Black-Scholes equation and a
risk-neutral valuation theorem if the underlying is driven by a fractional Brownian
motion B, (t), /2<H <1. For this purpose we will first prove some results

regarding the quasi-conditional expectation, especially the behavior to a Girsanov
transform. We will also compare our results with the classical results based on the
standard Brownian motion and we conclude that in the case of the fractiona
Brownian motion the price of the option no longer dependsonlyon T - t.

1. Introduction

If 0<H <1 the fractional Brownian motion (fBm) with Hurst parameter H is
the continuous Gaussian process {B,, (t),tT R}, B (t)=0 with mean E[BH (t)=0
and whose covariance is given by:

Ch (t’ S) = E[BH (t)BH (t)] =%{ |t|2H +HZH } |t - 5|2H}

If H :% then By, (t) coincideswith the standard Brownian motion B(t).

The fractional Brownian motion is a self-similar process meaning that for any
a>0 By (at) hasthesamelaw as a " By, (t).



The constant H determines the sign of the covariance of the future and past

increments. This covariance is positive when H > % ,zerowhen H :% and negative
when H <1.
2

Another property of the fractional Brownian motion is that for H >% it has

long range dependence in the sense that if we put

r(n) = Cov(By (1), By (n+1) - By (n))
then

3
ar(n)=
n=1
The sdf-similarity and long-range dependence properties make the fractional
Brownian motion a suitable tool in different applications like mathematical finance.

Since forH 1t % the fractional Brownian motion is neither a Markov process, nor a

semimartingale, we can not use the usual stochastic calculus to analyze it. Worse till
after a pathwise integration theory for fractiona Brownian motion was developed
(Lin (1995), Decreusefond and Ustunel (1999)) it was proven that the market
mathematical models driven by By, (t) could have arbitrage (Rogers (1997)). The
fractional Brownian motion was no longer considered fit for mathematical modeling
in finance. However after the development of a new kind of integral based on the
Wick product ( Duncan, Hu and Pasik-Duncan (2000), Hu and Oksenda (2000) )
caled fractional Ito integral, it was proved (Hu and Oksendal (2000)) that the
corresponding Ito type fractional Black-Schools market has no arbitrage. In the same
paper (Hu and Oksendal (2000)) a formula for the price of a european optionat t =0
is derived.

The purpose of this article is to extend the formula for every ti [O,T]. We
obtain risk-neutral valuation formula and a fractional Black-Scholes equation. We
will also analyze the sensitivity indicators.

This paper is organized as follows : in Section 2, we remind some results on
fractional Ito integral, in Section 3 we prove some results regarding the quasi
conditional expectation, especially the behavior to a Girsanov transform in section 4
we apply these results in the study of the european options.

2. Background

In this section we will present some result we will need for the rest of the
paper. For more aspects on these maters you may consult the fundamental papers
concerning fractiona Ito integral (Duncan, Hu and Pasik-Duncan (2000), Hu and
Oksendal (2000) ).

For afix H, 1/2<H <1 define:

fot.s)=H(H - 1)f- 472
Let f:R® R measurable. Then 1 L?(R) if
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Defining the inner product
(f.9). = AOf (S)altk  (t, s)dsat

RR
we have that (sz (R). (9, ) is a Hilbert space.

If 1 L7(R) define )f (t)dBy (t):= lim Ofn (t)dBy (t) where

R R
fo(t) = é ainC[ti,ti+1)(t)® f(t)
and c\)fn(t)dBH (t) = é a/ (BH (ti+1)' By (ti ))
R i
% 6
Lemma 1.1 (Itoisometry) If f1 L?(R) then Eéc‘)f (t)B (1) =|f|7
R 2

If £1 12(R) define e(f)::e(pgae(‘)deH - %|f|f%
R (%]

Lemma 1.2 The linear span of {e(f), fi LfZ(R)} isdensein L*(m) where
is the probability law of B, .

Let

n
(9= e e
X
be the Hermite polynomials.

If £1 L?(R) weputthat (w, f)=)f (t)dB, (t,w).
R

If a =(ay,...,a;)1 |, theset of al finite multi-indices of nonnegative integers,

and (e,), an orthogonal basisin L?(m) (see Lemma 3.1 in Hu and Oksendal (2000) )
we denote:

H, ()= hy, (w.e))h, (w.e))..hg (. e,)

Lemma 1.3 (fractional Wiener-Ito chaos expansion theorem) Let X1 L2(m).
Then there exists constants ¢, T R and a T | such that:

x(w):élgm(w) (in L*(m)

and
X

2 o 2
= |
(m ~ A G
al |
where al:i=a la,!..a,]



Define (S),, the set of all formal expansions
ofw)= 3 &, H, )
al |
such that
G, o=aalci(2N) ! <¥ for some g N
’ all
If Fw)=g a,H, (W) (S), and Gw)=g b, H, W)T (S),, we definethe
all al |
Wick product of F and G by
N [¢]
(FaG)w)= g ab,H,., W)

a,bl |

Lenmal4Let f,gl L?(R). Wehavethat
e(f)ae(g)=e(f +g)=e(f)e(ge "

The fractional white noise Wi, (t) at time t is defined by:

& (VF (L V)ovi g ()8, ()
e Or

Qox

W, (t) =

i=1

We havethat W, (t)1 (S),, and %BH (©)=wW, ) in (),

If Y:R® (S),, isafunction such that Y(t)aw, (t) isintegrablein (S),, the

fractional Ito integral is defined by:
o (t)aBy (t):= ¢y (t) aw, (t)dt
R

R

Lemma 1.5 (Geometric fractiona Brownian motion) Consider the fractional

differential equation:
dX (t) = mX (t)dt +sX (t)dB,, (t), X(0) = x
We have that:
X(t) = xexp&By, (t)+ nt - Loz 0
e 2 2

For the definition of the space L and of the Malliavin derivatives
D.X,DL X consult Hu and Oksendal (2000).

Lemma 1.6 (Fractional Ito formula) Consider the fractional differentia

equation:
dX (1) = mt,wlet +s (L,w)dB, (1),  ms T L}

If £1 C?(R,  R) then we have:
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Lemma 1.7 (Fractional Girsanov formula) Let T >0 and g a continuos
function with suppg 1 [0,T] and K afunctionwith supp K 1 [0, T] such that

(K,g), =(9, )., "f supp f 1l [0,7]
Define a probability measure  onthe s - algebra F" = B(B,(s).S£T)
by:

:—:l = exp?(- (w,K))

t
Then B, (t) =B, (t)+ (Psds isafractional Brownian motion under .
0

Denote I:fz ( ”) the space of function that are symmetric with respect to its n

2 ¥
LZ(R”)< .
We define the iterated integral:
1,(f):= odenA” =0 Of (8, 8,)dBy (s)-dBy (s,)

§<.<§,

Lemma 1.8 (fractional Wierer-1to chaos expansion theorem in terms of
iterated integrals) Let X1 L?(m). Then thereexists f, 1 I:fZ(R”) such that:

Xw)= & 1,(f,) (i L2(m))

n=0

an||f

L2

We say that a formal expansion
¥ ) R
G= é (\pndBHAn! gnl sz(Rn)
n=0R"
belongs to the space G , g1 N if

¥
o]
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n=0
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Let G" = JG . Wehavethat L*(m)] G
d N



¥ .
Let G= é c‘pndBHA”T G" . We define the quasi-conditional expectation of
n=0 R"

G withrespectto " = B(By (s),s£1) by:
= = wl_ 8 An
Elc]=EleIF" =& ean(Soore (S8 (5)
n=0 R"

Lemma 1.9

a Let F1 G'.Wehavethat E[F]i G

b) Let F,Gi G". Wehavethat E[F aG|=E,[F]aE[G]
¢ Let F1 L2(m). E[F]=F U F is E" - measurable

We say that a K" - adapted stochastic process M (t,w) is a quasi-martingale
if M(1)1 G"," tand EJM(t)] =M(s)," t3 s.

Lemma1.10
a B, (t) isaquas-martingae

b) Let f1 L?(R) and eft):= exp%é(‘)f (s)dB,, (s) - %|fc[0,t]|f2 ? We have that
elt) isaquas-martingale : ’

¢ Let fT L* and M(t):= E‘)f (sw)dB, (s). We havethat M(t) is a quas-
martingae :

Lemma 1.11 (fractional Clark-Ocone theorem)
a Let FT1 G and F is K" - measurable. Then E[D,F|T G™ ad
T
Fw) =E[F]+ oE[DiFlaw (1)
0

b) Let FT L?(m) and F is =" - measurable. Then E,[D,F]i L*? and

F(w) = E[F]+ E‘ﬁ}[DtF]dBH (t)



3. Someresults regar ding the quasi-conditional expectation

Let (W, K,m) a probability field such that By, (t,w) is a fractional Brownian
motion with respect to Ir.
Theorem 3.1
7 = 1By (T)|_
Forevery O<t<T and | | C we have Etk H ]—e
Proof:
Consider the fractional differential equation:
dX (t) =1 X (t)dB, (t), X(0)=1

Using Lemma 1.5 we have that:

X(t) = e B, (1) - 1| 22 0 31
e

Q-

Since
t
X(t)= ¢ X(s)dBy (s)
using Lemma 1.10 c it follows that
E[X(T)]= X(t)

or
|2

- 2H_t2Hg
Ek i ] 2 3.2

g.ed.
Theorem 3.2
Let f beafunctionsuchthat E[f(B,(T))]<¥.Thenforevery t£T

xBH

E 1= o pg o ‘j(x>dx 33

Proof:

Let f bethe Fourier transform of f :

fix)= '”f( X)dlx



Then f istheinverse Fourier transform of f :

f(x) = = ™ f (x)dx
R
We have that:
f(B, (1)) = %(‘)e'BH ™% F (¢ )
R
If follows that:
oy ix ~ u
Et[f(BH (T))]: t@ic‘ﬁ' BH(T)f(X)Xm]
6% r i
= % A, |67 BH (T)]f(x )dx
R
ix 2 2H .2H o
Lo T
R
=h(By (t)) 34

where h is the inverse Fourier transform of the product between

But the first function is the Fourier transform of

n,(x)= 1 expe: X" 9 35

Using the fact that the Fourier transform of a convolution is the product of the
Fourier transform of the two functions it follows that

h(BH (t)) = C‘T‘t,T (BH (t)‘ y)f (y)dy

g.ed
Corollary 3.3
Let Al B(R). Then
~ ] )
E[c (B, (T))] 1 ep® U Bul Gy 56




Let q1 R. Consider the process

t
By (t)=B. () +qt®™ =B, (t)+ (pHqt *'dt, OLtET 3.7
0

Lemma 1.7 assures us that there is a measure m such that By, (t) is a
fractional Brownian motion under m .
We will denote E; [} the quasi-conditional expectation with respect tom .

Consider
2 .
z(t)=el- ac [Ot]) = expg? By (t)- RIRELE 38
] 5 P
Theorem 3.4
Let f beafunction suchthat E[f (B, (T))]]<¥ .Thenforevery t£T
~, 1 ~
E;[£(By (T)) “Z0° [ (B (T))z(T)] 3.9
Proof:
Again we will denote by f the Fourier transform of f .
We have
e 2 u
—~ ~ 1 (ix-q)B,, (T)-3_T2H | p
ELfB,(MzM]=E &= " 2 flx)axy
& v
1 -ﬁT2H ~ | (ix- ( )z
—Ee 2 OEt[ 2 ]f(x)dx
1 -%TZH . (ix-q)BH (t)+g§-ixq+q225§.2H tZHQA
= oz °f (x)oix
R
ix B +Q —-ixq 2H tZHQ
= ()i(\)e ? °f (x)ax 3.10
P g



On the other hand

R
2
2H 6 X g 2H _2H

:%(\ﬁlxﬁ (tyat %7@ t g IXqTZHf(X)dX

R

|xBH(t)+€ -ixq ] 2H tzHgA

=—CF g e f (x )ax 311

R

The result follows from 3.10 and 3.11
g.ed.

10



4. Applicationsto Mathematical Finance

Consider a fractional Black-Sholes market that has two investment

possibilities:
1. amoney market account:
dM(t)=rM(t)dt, M(0)=1 OEt£T 4.1
where r represent the constant riskless interest rate.
2. a stock whose price satisfies the equation:
ds(t) =d S(t)dt +sS(t)dB, (t), S(0)=S>0, 0£t£T 4.2

where d,s ! O areconstants.

Hu and Oksendal (2000) have shown that this market does not have arbitrage
and iscomplete.

Under the risk-neutral measure ( ) we have that:

ds(t) = rs(t)dt +sS(t)dB, (t), S(0)=S>0, 0£t£T 43

We will denote by E [>} the quasi-conditional expectation with respect to the
risk-neutral measure.

Theorem 4.1 (fractional risk-neutral evaluation)
The price at every t1 [0,T] of abounded F " - measurable claim F1 L2(m)
is given by

F(t)=e"TYE [F] 4.4
Proof:

Since the market is complete there is a replicating portfolio of the clam
(m(t), st)) whosevalueis:

and

We have that

dF (t) = m(t)dMm (t) + s(t)ds(t)

= rF(t)dt +s s{t)S(t)dB, (t)

11



By multiplying with e " and integrating it follows that
e "F(t)= F(0)+t(‘p'”s st)slt ), t ), OEtET 45
By the fractional Clark-Ocone thgorem (Lemma 1.11) we have that
e "F=E[F]+e ”Toé [D, FldBy, (t) 4.6
0

From the completeness of the market we get

E[DF]=elts sf)sft) 0£t £T 47
So we have that

e TE = E[F]+ g s ok )st B )

It follows that
_ _ & U
E[e’ rTF] =E[F]+E,&¢"s st )st JdB, t )u 4.8
& s
Using Lemma 1.10 we get that
t
EleF]=ElF]+ s st)st By ) 49
0

From 4.5 and 4.9 we have that
F(1)=e I [F]
g.ed

Theorem 4.2 (fractional Black-Sholes formuld)
Thepriceat every ti [O,T] of an european call option with strike price K and
maturity T isgiven by

C(t, S(t)) = S(t)N(d,) - Ke"*T"UN(d,) 4.10

Ingaes%9+ r(T- t)+%(‘l’2H - tZH)

— %)
where d, = =T and
as(t) o 1) i 2H _ 42H
L lnéTEH(T t) > (T t )
2° s T2 - 2H

and N(¥ isthe cumulative probability of the standard normal distribution.



Proof:

We have that

C(t, (1) = E |e ™) max(((T) - K)0)]

— Etge-p(-r-t)S(T)C e-r%T-t)Eth

U x u
{S(T)>K}g {S(T)>K}qg

— o T-t)E é Uy 1AT-t)E € u
e MYsm > kg X RS sm > kg

But if we denote by

K/ 1 22
d;:In(/S) r'2+25T

we get

=& a_g €
St sm > ke~ B s g (. (T))g

S SR CEYW)iAN
a 2H 2 ! 2H _f2H |+
d; \/Zp(T -t ) 2T g
¥ 2
® 7°0
= 0 i@(p - Z?:dz
d;-B,, (1) 2p 9
Jroren
By (D)9
TZH_tzH - 2 5
= 0 i@(p - Z—:dZ
v V2p 2 g
=N(d,) 411
Consider the process
B, (t)=B,{t)-s t?*, OEtET 412

Lemma 1.7 assures us that there is a measure m such that By, (t) is a
fractional Brownian motion under m .

We will denote
2

Z(t) = epSB,, t)- %tZH 413

Ql-l-o:

13



Using Theorem 3.4 we have that

rT l\;l
{S(T)>K}g =€ EteZ(T)C{X>d;}(BH(T))g

u
. € u
=e"Z(1)E; gc{ oy B (T

=eZ()E; gc{ G (T))§

— erTZ (t) gc

Et AS(T)C

{(T)> K}u
But

IN(S(T))=InS+rT - 2 T2H +sB,, (T)
_ s® on *
=InS+rT +7T +sB, (T)

If we denote

we get

. 6 RN
E fCsm i BB o B

4.15

414

14



Et gS(T)C{S(T) > K} E =e'TZ(t) N(dl)

= eTe "S(t)N(d,) 4.16

From 4.11 and 4.16 we get the price of the option.
g.ed

Theorem 4.3 (fractional Black-Sholes equation)
The price of a derivative on the stock price with a bounded payoff f (S(T)) is

givenby D(t,S(t)), where D(t,S) isthe solution of the PDE:
b, Hs 2t?H-1g2 — — 1°D +rSE- rD=0
fit 1S
D(T,S) = f(S) 417
Proof:

From Theorem 4.1 and Theorem 3.2 it follows that the price of the
derivative at amoment t isafunction of t and St).

As in the classica Black-Sholes model we consider a portfolio that contains a
derivativeand - D stock.
The value of this portfolio is

P(t)=D(t,S(t))- DS(t) 4.18

Under the market measure ™ using fractiona Ito formula (Lemma 1.6) and
the fact that

D, St )=st)p gBH +dt-—t2H

=st)p U(SBH )
=sSft oo (u)

Q-0

and

D! st ) =5t )¢5 €, u)du =sHs k 22
we get that i
dP()=dD( S{t)) - bas(t)

2. 2H-102 12D

§—+Hst 210,410 b ()
‘HS

- D S‘dt+ S— - DSS—dB
s QS s H



We want this portfolio to be riskless. So

=12 a4 dP (t)=rP (t)dt 4.19
1S
It follows that evaluation equation is given by:
2
s hs 2tz'*'lszg- rD=0
it 1S 1S
g.ed

Remarks
Asin the classical model the equation does not depend on d

The price of the european cal given by theorem Theorem 4.2 is the

solution of the equation 4.17 with the boundary condition:
D(t,S) = max(S- K,0)

Theorem 4.5 (The Greeks)

The Greeks are given by:
D=1 =N(d)
N=ge=-e TIN(G,)
Jz%T?C: (dWT - "
=j1_f=(T OKe T IN(d,)
2
G:ESS Ss«/TZlH {2H fla)
Q:E:-rKerﬁ IN(d,)- HE2H? Tzfs _ 1 (d,)
where
f(z):%peé
Proof:

We will first derive a genera formula. Let y be one of the influence factors.

We have

-rT-t)
1€ TSN+ SIN(d,) _ 1(Ke ) N(d,)- Ke ™V
Ty Ty )\ fy

N(d,)

Ty

16



W) 1 2diord, 1 & (dl- s T2 - ¢ )ZQﬂdz
v 2 25 V> ¢ 2 = fly
2 A 2(+2H 2H | A
L off & Sapls ST el 2T LT
2p [} gy
1 ®d?9 aS(t) o 61d,
= exp&- expcin +r(T - t)—=
70 0 2 S PEEK o R v
1@ d’0s(1) 1d,
[ - — 7 T-1))—=
@eqoé K op(r(T - t)) oy
It follows that:
r{T-t) [+ 2H 2H
%:FN(dl)-ﬂ%N d )+S(o|l)ﬂ(S Tﬂ ) 421
y Ty y y

Substituting in 4.21 we get the Greeks.

Remarks

The fractiona Black-Sholes price of a european call option no longer depends
onlyon T - t.

A reason may be the fact that the fractiona Brownian motion has long
memory. The price of an option at amoment t 1 [O,T] will depend on the stock price
S(t), but despite the classical Black-Sholes model, will take into consideration the
evolution of the stock price in the period [0,t]. This influence is reflected in the
fractiona Black-Sholes formula by the Hurst parameter H .

Consider three moments t; £t, Et£ T and two options with maturity T one
of them written on t; and the other oneon t,. In the classical Black-Sholes model the

prices of the two options at the moment t were equal.
In the fractional Black-Sholes model the prices of the two options at the
moment t are no longer equal. Due to the long memory property, the price of the first

option is aso influenced by the evolution of the stock price in the period [tl, t2] .

17
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