
 

1 

 
 

 
 

Option Pricing in a Fractional Brownian Motion 
Environment 

 
Ciprian Necula 

 
Academy of Economic Studies 

Bucharest, Romania 
 

Email: cipnec@yahoo.com 
 

This draft: February 12, 2002 
 

Abstract 
 

The purpose of this paper is to obtain a fractional Black-Scholes formula for 
the price of an option for every [ ]Tt ,0∈ , a fractional Black-Scholes equation and a 
risk-neutral valuation theorem if the underlying is driven by a fractional Brownian 
motion ( ) 121  , << HtBH . For this purpose we will first prove some results 
regarding the quasi-conditional expectation, especially the behavior to a Girsanov 
transform. We will also compare our results with the classical results based on the 
standard Brownian motion and we conclude that in the case of the fractional 
Brownian motion the price of the option no longer depends only on tT − . 

 
 
1. Introduction 

 
If 10 << H  the fractional Brownian motion (fBm) with Hurst parameter H is 

the continuous  Gaussian process ( ){ }R∈ttBH , , ( ) 0=tBH  with mean ( )[ ] 0=tBE H  
and whose covariance  is given by: 

 

             ( ) ( ) ( )[ ] { }HHH
HHH ststtBtBEstC 222  

2
1

, −−+==  

 

If 
2
1

=H  then ( )tBH  coincides with the standard Brownian motion ( )tB . 

The fractional Brownian motion is a self-similar process meaning that for any 
0>α  ( )tBH α  has the same law as ( )tBH

Hα . 
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The constant H determines the sign of the covariance of the future and past 

increments. This covariance is positive when 
2
1

>H , zero when 
2
1

=H  and negative 

when 
2
1

<H . 

Another property of the fractional Brownian motion is that for 
2
1

>H  it has 

long range dependence in the sense that if we put 
                          ( ) ( ) ( ) ( )( )nBnBBCovnr HHH −+= 1,1  
then 

                                              ( ) ∞=∑
∞

=1n

nr  

The self-similarity and long-range dependence properties make the fractional 
Brownian motion a suitable tool in different applications like mathematical finance. 

Since for
2
1

≠H  the fractional Brownian motion is neither a Markov process, nor a 

semimartingale, we can not use the usual stochastic calculus to analyze it. Worse still 
after a pathwise integration theory for fractional Brownian motion was developed 
(Lin (1995), Decreusefond and Ustunel (1999))  it was proven that the market 
mathematical models driven by ( )tBH  could have arbitrage (Rogers (1997)). The 
fractional Brownian motion was no longer considered fit for mathematical modeling 
in finance. However after the development of a new kind of integral based on the 
Wick product ( Duncan, Hu and Pasik-Duncan (2000), Hu and Oksendal (2000) ) 
called fractional Ito integral, it was proved (Hu and Oksendal (2000)) that the 
corresponding Ito type fractional Black-Schools market has no arbitrage. In the same 
paper (Hu and Oksendal (2000)) a formula for the price of a european option at 0=t  
is derived. 

The purpose of this article is to extend the formula for every [ ]Tt ,0∈ . We 
obtain risk-neutral valuation formula and a fractional Black-Scholes equation. We 
will also analyze the sensitivity indicators.   

This paper is organized as follows : in Section 2, we remind some results on 
fractional Ito integral, in Section 3 we prove some results regarding the quasi-
conditional expectation, especially the behavior to a Girsanov transform, in section 4 
we apply these results in the study of the european options. 

 
2. Background 
 
In this section we will present some result we will need for the rest of the 

paper. For more aspects on these maters you may consult the fundamental papers 
concerning fractional Ito integral (Duncan, Hu and Pasik-Duncan (2000), Hu and 
Oksendal (2000) ). 

For a fix 121  , << HH  define: 

                            ( ) ( ) 22
12,

−
−−=

H
H stHHstφ  

Let RR →:f  measurable. Then ( )R2
φLf ∈  if 

                          ( ) ( ) ( )∫ ∫ ∞<=
R R

H dsdtsttfsff ,:2 φ
φ
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Defining the inner product  

                            ( ) ( ) ( )∫ ∫=
R R

H dsdtsttgsfgf ,:, φ
φ

 

we have that ( )( )
φφ ⋅⋅,,2 RL  is a Hilbert space. 

 
If  ( )R2

φLf ∈  define ( ) ( ) ( ) ( )∫∫ ∞→
=

R
Hn

n
R

H tdBtftdBtf lim:   where 

                                         ( ) [ )( ) ( )tftatf
i

tt
n
in ii

→= ∑ +1,χ  

and               ( ) ( ) ( ) ( )( )∑∫ −= +
i

iHiH
n
i

R
Hn tBtBatdBtf 1:  

 

Lemma 1.1 (Ito isometry) If  ( )R2
φLf ∈   then   ( ) ( ) 2

2

φ
ftdBtfE

R
H =










∫  

If  ( )R2
φLf ∈  define ( ) 










−= ∫

R
H ffdBf 2

2
1

exp:
φ

ε  

 
 
Lemma 1.2 The linear span of ( ) ( ){ }R2, φε Lff ∈  is dense in ( )µ2L  where µ  

is the probability law of HB . 
 
Let 

                                ( ) ( ) ( )22 22

1 x
n

n
xn

n e
dx
d

exh −−=  

be the Hermite polynomials. 
 
If ( )R2

φLf ∈  we put that ( ) ( )∫=
R

H tdBtff ωω ,, . 

 
If ( ) I∈= 11,...,ααα , the set of all finite multi- indices of nonnegative integers, 

and ( )nne  an orthogonal basis in ( )µ2L  (see Lemma 3.1 in Hu and Oksendal (2000)  ) 
we denote: 

                       ( ) ( ) ( ) ( )nn eheheh
n

,...,,:
121 1 ωωωω αααα    =H  

 
Lemma 1.3 (fractional Wiener-Ito chaos expansion theorem) Let ( )µ2LX ∈ . 

Then there exists constants R∈αc  and I∈α  such that: 

                                 ( ) ( )ωω α
α

αH∑
∈

=
I

cX    (in ( )µ2L  ) 

and 

                                    ( ) ∑
∈

=
I

L
cX

α
αµ

α 22 !2  

where  !!...!:! 21 nαααα =  
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Define ( )*
HS  the set of all formal expansions 

                                             ( ) ( )ωω α
α

αH∑
∈

=
I

cG     

such that 

                           ( ) ∞<= −

∈
− ∑ q

I
qH

cG α

α
αα N2! 22

,
 for some N∈q  

 
If  ( ) ( ) ( )*

H
I

SaF ∈= ∑
∈

ωω α
α

αH   and  ( ) ( ) ( )*
H

I

SbG ∈= ∑
∈

ωω α
α

αH  we define the 

Wick product of F  and G  by 
                                ( )( ) ( )ωω βαβ

βα
α +

∈
∑=◊ HbaGF

I,

   

 
Lemma 1.4 Let ( )R2, φLgf ∈ . We have that  

                          ( ) ( ) ( ) ( ) ( ) φεεεεε
gf

egfgfgf
,−

=+=◊   
 
The fractional white noise ( )tWH  at time t  is defined by: 

                          ( ) ( ) ( ) ( ) ( )∑ ∫∫
∞

= 










=

1

,
i R

Hi
R

iH tdBtedvvtvetW  φ  

We have that ( ) ( )*
HH StW ∈  and ( ) ( )tWtB

dt
d

HH =  in ( )*
HS . 

 
If  ( )*: HSY →R  is a function such that ( ) ( )tWtY H  ◊  is integrable in ( )*

HS  the 
fractional Ito integral is defined by: 

                              ( ) ( ) ( ) ( )∫∫ ◊=
R

H
R

H dttWtYtdBtY   :  

 
Lemma 1.5 (Geometric fractional Brownian motion) Consider the fractional 

differential equation:  
                          ( ) ( ) ( ) ( ) ( ) xXtdBtXdttXtdX H =+= 0,    σµ  
We have that: 

                             ( ) ( ) 





 −+= H

H tttBxtX 22

2
1

exp σµσ  

 
For the definition of the space 2,1

φL  and of the Malliavin derivatives 

XDXD ss
φ,  consult Hu and Oksendal (2000).  
 
Lemma 1.6 (Fractiona l Ito formula) Consider the fractional differential 

equation:  
                     ( ) ( ) ( ) ( ) 2,1,,,, φσµωσωµ L∈+=          tdBtdtttdX H  
 
If ( )RR ×∈ +

2Cf  then we have: 
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( )( ) ( )( ) ( )( ) ( )( ) ( ) +
∂
∂

+
∂
∂

+= ∫∫
tt

dsssXs
x
f

dssXs
s
f

XftXtf
00

,,0,0, µ  

                   ( )( ) ( ) ( ) ( )( ) ( ) ( )∫∫ ∂
∂

+
∂
∂

+
t

s

t

H dssXDssXs
x

f
sdBssXs

x
f

0
2

2

0

,, φσσ  

 
Lemma 1.7 (Fractional Girsanov formula) Let 0>T  and γ  a continuos 

function with [ ]T,0supp ⊂γ  and K  a function with [ ]TK ,0supp ⊂  such that 
                       [ ]TfffK

L
,0supp,,, 2 ⊂∀=        γγ

φ
 

Define a probability measure µ~  on the σ - algebra  ( )( )TssBH
H

T ≤= ,BF  
by: 

                                          ( )K
d
d

,exp
~

ω
µ
µ

−= ◊  

Then ( ) ( ) ∫+=
t

sHH dstBtB
0

~
γ  is a fractional Brownian motion under µ~ . 

 
Denote ( )nL R2ˆ

φ  the space of  function that are symmetric with respect to its n  

variables and ( ) ∞<2
2 nRL

f . 

We define the iterated integral: 
             ( ) ( ) ( ) ( )∫∫

<<

⊗ ==
n

n ss
nHHn

R

n
Hn sdBsdBssfnfdBfI

...
11

1

...,...,!::  

 
Lemma 1.8 (fractional Wiener-Ito chaos expansion theorem in terms of 

iterated integrals)  Let ( )µ2LX ∈ . Then there exists ( )n
n Lf R2ˆ

φ∈  such that: 

                                 ( ) ( )∑
∞

=

=
0n

nn fIX ω    (in ( )µ2L  ) 

and 

                                    ( ) ( )∑
∞

=

=
0

22
22 !

n
RLnL nfnX

µ
. 

 
 
We say that a formal expansion  

                               ( )n
n

n R

n
Hn LgdBgG

n

R   2

0

ˆ, φ∈= ∑ ∫
∞

=

⊗  

belongs to the space q−G , N∈q  if 

                               ( ) ∞<= −
∞

=
− ∑ qn

n
RLnq

egnG n
2

0

22
2!  

 
 Let U

Nq
q

∈
−= GG* . We have that ( ) *2 G⊂µL  
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Let  *

0

G∈= ∑ ∫
∞

=

⊗

n R

n
Hn

n

dBgG  . We define the quasi-conditional expectation of 

G  with respect to ( )( )tssBH
H

t ≤= ,BF  by: 
 

            [ ] [ ] ( ) ( ) ( )∑ ∫
∞

=

⊗
≤≤==

0
0:|~:~

n R

n
Htsn

H
tt

n

sdBssgGEGE χF  

 
Lemma 1.9 
a) Let *G∈F . We have that [ ] *~ G∈FEt  

b) Let *, G∈GF . We have that [ ] [ ] [ ]GEFEGFE ttt
~~~     ◊=◊  

c) Let ( )µ2LF ∈ . [ ] FFEt =~  ⇔  F  is H
tF - measurable 

 

We say that a H
tF - adapted stochastic process ( )ω,tM  is a quasi-martingale 

if ( ) ttM ∀∈ ,*G  and ( )[ ] ( ) stsMtME s ≥∀= ,~ . 
 

Lemma 1.10 
a) ( )tBH  is a quasi-martingale 

b) Let ( )R2
φLf ∈  and ( ) ( ) ( ) [ ] 










−= ∫

2
,0

0
2
1

exp:
φ

χε t

t

H fsdBsft . We have that 

( )tε  is a quasi-martingale 

c) Let 2,1
φL∈f  and ( ) ( ) ( )∫=

t

H sdBsftM
0

,: ω . We have that ( )tM  is a quasi-

martingale 
 

Lemma 1.11 (fractional Clark-Ocone theorem) 
a)   Let *G∈F  and F  is H

TF - measurable. Then [ ] *~ G∈FDE tt  and 

                               ( ) [ ] [ ] ( )∫ ◊+=
T

Htt tWFDEFEF
0

~
  ω  

b)    Let ( )µ2LF ∈  and F  is H
TF - measurable. Then [ ] 2,1~

φL∈FDE tt  and                      

                               ( ) [ ] [ ] ( )∫+=
T

Htt tdBFDEFEF
0

~
ω  
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3. Some results regarding the quasi-conditional expectation 
 
Let ( )µ,,KΩ  a probability field such that ( )ω,tBH  is a fractional Brownian 

motion  with respect to µ . 
 
 
Theorem 3.1 

For every Tt <<0  and C∈λ  we have 
( )[ ] ( ) 





 −+

=
HtHTtHBTHB

t eeE
22

2

2
~

λ
λλ

  
 
Proof: 
 
Consider the fractional differential equation:  
 
                             ( ) ( ) ( ) ( ) 10, == XtdBtXtdX H     λ  
 
Using Lemma 1.5 we have that: 
 

                            ( ) ( ) 





 −= H

H ttBtX 22

2
1

exp λλ                                        3.1 

Since 

                                 ( ) ( ) ( )∫=
t

H sdBsXtX
0

λ  

using Lemma 1.10 c  it follows that 
 
                                     ( )[ ] ( )tXTXEt =~  
or 

                       
( )[ ] ( ) 





 −+

=
HtHTtHBTHB

t eeE
22

2

2
~

λ
λλ

                                          3.2 
q.e.d. 
 

 
 
Theorem 3.2   
Let f  be a function such that ( )( )[ ] ∞<TBfE H . Then for every Tt ≤  
 

      ( )( )[ ] ( )
( )( )

( ) ( )dxxf
tT
tBx

tT
TBfE HH

H

R
HHHt 











−
−

−
−

= ∫ 22

2

22 2
exp

2

1~
 

π
          3.3 

 
Proof: 
 
Let f̂  be the Fourier transform of f : 
 
                                          ( ) ( )∫ −=

R

ix dxxfef ξξˆ  
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Then f  is the inverse Fourier transform of f̂ : 
 

                                          ( ) ( )∫=
R

ix dfexf ξξ
π

ξ ˆ
2
1

 

We have that: 

                             ( )( ) ( ) ( )∫=
R

THiB
H dfeTBf ξξ

π
ξ ˆ

2
1

  

 
If follows that: 

                 ( )( )[ ] ( ) ( )











= ∫

R

THBi
tHt dfeETBfE ξξ

π
ξ ˆ

2
1~~  

 

                                        
( )[ ] ( )∫=

R

THBi
t dfeE ξξ

π
ξ ˆ~

2
1  

 

                                       
( )

( )∫





 −−

=
R

HtHTtHBi
dfe ξξ

π

ξ
ξ ˆ

2
1 22

2

2
 

 

                                       ( )( )tBh H=                                                            3.4 
 
where h  is the inverse Fourier transform of the product between 






 −− HtHT

e
22

2

2ξ

 and ( )ξf̂ . 
 
But the first function is the Fourier transform of  
 

                            ( )
( ) ( )








−

−
−

= HHHHTt tT
x

tT
xn 22

2

22, 2
exp

2

1

π
          3.5 

 
Using the fact that the Fourier transform of a convolution is the product of the 

Fourier transform of the two functions it follows that 
 
                                    ( )( ) ( )( ) ( )∫ −=

R
HTtH dyyfytBntBh ,  

                                                                                                                     q.e.d 
 
Corollary 3.3 
Let ( )RB∈A . Then 
 

       ( )( )[ ] ( )
( )( )

( ) dx
tT
tBx

tT
TBE HH

H

A
HHHAt 











−
−

−
−

= ∫ 22

2

22 2
exp

2

1~
 

π
χ          3.6 
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Let R∈θ . Consider the process 
 

                         ( ) ( ) ( ) TtdHtBttBtB
t

H
H

H
HH ≤≤+=+= ∫ − 0,2

0

122*      ττθθ            3.7  

 
Lemma 1.7 assures us that there is a measure *µ  such that ( )tBH

*  is a 

fractional Brownian motion under *µ . 

We will denote [ ]⋅*~
tE  the quasi-conditional expectation with respect to *µ . 

 
Consider 

                             ( ) [ ]( ) ( ) 







−−=−= H

Ht ttBtZ 2
2

,0 2
exp

θ
θθχε                   3.8 

 
Theorem 3.4  
Let f  be a function such that ( )( )[ ] ∞<TBfE H . Then for every Tt ≤  
 

                               ( )( )[ ]
( )

( )( ) ( )[ ]TZTBfE
tZ

TBfE HtHt
~1~* =                        3.9 

 
Proof: 
 
Again we will denote by f̂  the Fourier transform of f . 
 
We have 
 

           ( )( ) ( )[ ] ( ) ( )
( )














= ∫

−−

R

HTTHBi

tHt dfeETZTBfE ξξ
π

θθξ ˆ
2
1~~ 2

2

2
 

 

                              
( ) ( )[ ] ( )∫

−−
=

R

THBi
t

HT
dfeEe ξξ

π
θξ

θ
ˆ~

2
1 2

2

2
 

 

                              
( ) ( )

( )∫





 −














+−−+−

−
=

R

HtHTitHBiHT
dfee ξξ

π

θ
ξθ

ξ
θξθ

ˆ
2
1

22
2

2

2

2
2

2

2  

 

                              ( )
( )

( )∫





 −














−−+

=
R

HtHTitHBi

dfetZ ξξ
π

ξθ
ξ

ξ
ˆ

2
1

22
2

2
 

              3.10 
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On the other hand 
 

    ( )( )[ ] ( )
( )












= ∫






 −

R

HTTHBi

tHt dfeETBfE ξξ
π

θξ ˆ
2
1~~ 2*

**   
 

                                        
( ) ( )∫ −








=
R

HTiTHBi
t dfeeE ξξ

π
θξξ ˆ~

2
1 2*

*    
 

                                        
( )

( )∫ −




 −−

=
R

HTi
HtHTtHBi

dfee ξξ
π

θξ
ξ

ξ ˆ
2
1 222

2

2
*

   
 

                                       
( )

( )∫ −




 −−





 +

=
R

HTi
HtHTHttHBi

dfee ξξ
π

θξ
ξθξ

ˆ
2
1 222

2

2
2

  
  

 

                                       
( )

( )∫





 −














−−+

=
R

HtHTitHBi

dfe ξξ
π

ξθ
ξ

ξ
ˆ

2
1

22
2

2
 

                         3.11 

 
The result follows from 3.10 and 3.11 
                                                                                                                     q.e.d. 
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4. Applications to Mathematical Finance 
 
Consider a fractional Black-Sholes market that has two investment 

possibilities: 
1. a money market account: 
 
                             ( ) ( ) ( ) TtMdttrMtdM ≤≤== 0,10,                                   4.1 
 
where r  represent the constant riskless interest rate. 
2. a stock whose price satisfies the equation: 
 
              ( ) ( ) ( ) ( ) ( ) TtSStBdtSdttStdS H ≤≤>=+= 0,00,        σδ                  4.2 
 
where 0, ≠σδ  are constants. 
Hu and Oksendal (2000) have shown that this market does not have arbitrage 

and  is complete. 
Under the risk-neutral measure ( µ ) we have that: 
 
                ( ) ( ) ( ) ( ) ( ) TtSStdBtSdttrStdS H ≤≤>=+= 0,00,       σ                4.3 
 
We will denote by [ ]⋅tE

~
 the quasi-conditional expectation with respect to the 

risk-neutral measure. 
 
Theorem 4.1 (fractional risk-neutral evaluation) 
The price at every [ ]Tt ,0∈  of a bounded H

TF - measurable claim ( )µ2LF ∈  
is given by 

 
                                                 ( ) ( ) [ ]FEetF t

tTr ~−−=                                     4.4 
 
Proof: 
 
Since the market is complete there is a replicating portfolio of  the claim 

( ) ( )( )tstm ,  whose value is: 
 
                                        ( ) ( ) ( ) ( ) ( )tStstMtmtF +=  
and  
 
                                                     ( ) FTF =  
 
We have that 
                        ( ) ( ) ( ) ( ) ( )tdStstdMtmtdF +=  
 
                                  ( ) ( ) ( ) ( )tdBtStsdttrF H σ+=  
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By multiplying with rte−  and integrating it follows that 

                         ( ) ( ) ( ) ( ) ( ) TtdBSseFtFe
t

H
rrt ≤≤+= ∫ −− 0,0

0

   τττστ            4.5 

By the fractional Clark-Ocone theorem (Lemma 1.11) we have that 

                                [ ] [ ] ( )∫−− +=
T

H
rTrT dBFDEeFEFe

0

~
τττ                           4.6 

From the completeness of the market we get 
 
                              [ ] ( ) ( ) ( ) TSseFDE Tr ≤≤= − τττστ

ττ 0,
~

                             4.7 
So we have that 

                          [ ] ( ) ( ) ( )∫ −− +=
T

H
rrT dBSseFEFe

0

τττστ   

It follows that 

                      [ ] [ ] ( ) ( ) ( )











+= ∫ −−

T

H
r

t
rT

t dBSseEFEFeE
0

~~ τττστ                      4.8 

 
Using Lemma 1.10 we get that 
 

                       [ ] [ ] ( ) ( ) ( )∫ −− +=
t

H
rrT

t dBSseFEFeE
0

~
τττστ                             4.9 

 
From 4.5 and 4.9 we have that 
                                               ( ) ( ) [ ]FEetF t

tTr ~−−=  
                                                                                                                      q.e.d 
 
 
Theorem 4.2 (fractional Black-Sholes formula) 
The price at every [ ]Tt ,0∈  of an european call option with strike price K  and 

maturity T  is given by 
 
                          )()()())(,( 2

)(
1 dNKedNtStStC tTr −⋅−−=                           4.10 

 

where                 
( ) ( )

HH

HH

tT

tTtTr
K
tS

d
22

22
2

1
2

)(
ln

−

−+−+







=
σ

σ

        and 

                                       
( ) ( )

HH

HH

tT

tTtTr
K
tS

d
22

22
2

2
2

)(
ln

−

−−−+







=
σ

σ

 

 
and ( )⋅N  is the cumulative probability of the standard normal distribution. 
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Proof:  
 
We have that 
 
                ( ) ( )[ ])0,)(max(

~
))(,( KTSeEtStC tTr

t −= −⋅−  

                                ( ) ( )






>−





>= −⋅−−⋅−
})(

~
})()(~

KTSEXeKTSTSeE t
tTrtTr

t {{ χχ                    

                                ( ) ( )






>−





>= −⋅−−⋅−
})(

~
})()(~

KTSEXeKTSTSEe t
tTr

t
tTr

{{ χχ  

 
But if we denote by 

                                   
( )

σ

σ HTrTS
K

d

22

*
2

2
1

ln +−
=  

we get 
 

               ( )( )








>
=





> TB
dx

EKTSE Htt }
~

})(
~

*
2{{ χχ  

                                              ( )
( )( )

( )∫
∞












−
−

−
−

=
*
2

22

2

22 2
exp

2

1

d

dx
tT
tBx

tT
HH

H
HHπ

 

                                              
( )

zd
z

HH tT

tHBd
∫
∞

−

−








−=

22

*
2

2

2
exp

2
1
π

 

                                              

( )

zdz
HH tT

dtHB

∫
−

−

∞−








−=

22

*
2

2

2
exp

2
1
π

 

                                              ( )2dN=                                                                       4.11 
 

Consider the process 
 
                                    ( ) ( ) TtttBtB H

HH ≤≤−= 0,2*     σ                            4.12 
 
Lemma 1.7 assures us that there is a measure *µ  such that ( )tBH

*  is a 

fractional Brownian motion under *µ . 
 
We will denote 

                             ( ) ( ) 







−= H

H ttBtZ 2
2

2
exp

σ
σ                                          4.13 
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Using Theorem 3.4 we have that 
 

         ( )( )








>
=





> TB
dx

TZEeKTSTSE Ht
rT

t }
)(

~
})()(

~
*
2{{ χχ  

                                               ( ) ( )( )








>
= TB

dx
EtZe Ht

rT

}
~

*
2

*

{
χ  

                                               ( ) ( )( )








>
= TB

dx
EtZe Ht

rT

}
~

*
2

*

{
χ  

                                               





>= })(
~)( *

KTSEtZe t
rT

{χ  

But 
 

                   ( ) )(
2

ln)(ln 2
2

TBTrTSTS H
H σ

σ
+−+=  

                                 )(
2

ln *2
2

TBTrTS H
H σ

σ
+++=                                              4.14 

 
If  we denote 

                                            
( )

σ

σ HTrTS
K

d

22

*
1

2
1

ln −−
=  

we get 
 
 

               ( )( )








>
=





> TB
dx

EKTSE Htt
*

*
1

**

}
~

})(
~

{{ χχ  

                                              
( )

( )( )
( )∫

∞















−
−

−
−

=
*
1

22

2*

22 2
exp

2

1

d

dx
tT
tBx

tT
HH

H
HHπ

 

                                              
( )

zd
z

HtHT

tHBd

∫
∞

−

−








−=

22

**
1

2

2
exp

2
1
π

 

                                              

( )

zd
z

HtHT

dtHB

∫
−

−

∞−








−=

22

*
1

*

2

2
exp

2
1
π

 

                                              ( )1dN=                                                               4.15 
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So 

                ( )1)(})()(~ dNtZeKTSTSE rT
t =





>{χ  

 
                                                      ( )1)( dNtSee rtrT −=                                   4.16 
 
From  4.11 and 4.16 we get the price of the option. 
                                                                                      q.e.d 
 

 
Theorem 4.3 (fractional Black-Sholes equation) 
The price of a derivative on the stock price with a bounded payoff ( )( )TSf  is 

given by ( )( )tStD , , where ( )StD ,  is the solution of the PDE: 

             02

2
2122 =−

∂
∂

+
∂
∂

+
∂

∂ − rD
S
D

rS
S
D

StH
t

D Hσ  

             ( )SfSTD =),(                                                                       4.17 
 
Proof: 
 
From Theorem 4.1 and  Theorem 3.2 it follows that the price of the 

derivative at a moment t  is a function of t  and ( )tS . 
As in the classical Black-Sholes model we consider a portfolio that contains a 

derivative and ∆−  stock. 
The value of this portfolio is 
 

( ) ( )( ) ( )tStStDt ∆−=Π ,                                   4.18 
 

Under the market measure µ  using fractional Ito formula (Lemma 1.6) and 
the fact that 

                     ( ) ( ) ( ) 







−+= H

Hu BDSSD 2
2

2
τ

σ
δττστττ  

                                 ( ) ( )( )τστ Hu BDS=  
                                 ( ) [ ]( )uS τχτσ ,0=  
and 

                           ( ) ( ) ( ) ( )∫ −==
τ

φ
τ ττστφτστ

0

12, HHSduuSSD  

we get that  
 

          ( ) ( )( ) ( )tdStStdDtd ∆−=Π ,                  

                    ( )tBdS
S
D

SdtS
S
D

S
S
D

StH
t
D

H
H 






 ∆−

∂
∂

+







∆−

∂
∂

+
∂
∂

+
∂
∂

= − σσδδσ   2

2
2122  
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We want this portfolio to be riskless. So 
 

                                    
S
D

∂
∂

=∆          and        ( ) ( )dttrtd Π=Π                       4.19 

 
It follows that evaluation equation is given by: 
 

                                      02

2
2122 =−

∂
∂

+
∂
∂

+
∂

∂ − rD
S
D

StH
S
D

rS
t

D Hσ  

q.e.d 
Remarks 
• As in the classical model the equation does not depend on δ  
• The price of the european call given by theorem Theorem 4.2 is the 

solution of the equation 4.17 with the boundary condition: 
                                    ( ) ( )0,max, KSStD −=  
 
 
Theorem 4.5 (The Greeks) 
The Greeks are given by: 

                               ( )1dN
S
C

=
∂
∂

=∆                                             

                               ( ) ( )2dNe
K
C tTr −−−=

∂
∂

=∇  

                               ( ) HH tTdSf
C 22

1 −=
∂
∂

=
σ

ϑ                                      4.20 

                                ( ) ( ) ( )2dNKetT
r
C tTr −−−=

∂
∂

=ρ  

                               ( )1222

2 1
df

tTSS
C

HH −
=

∂
∂

=Γ
σ

 

            ( ) ( ) ( )122

12
2 df

tT

S
HtdNrKe

t
C

HH

HtTr

−
−−=

∂
∂

=Θ −−− σ
 

 
 
where 

                                            ( ) 2

2

2
1

z

ezf
−

=
π

 

 
Proof: 
 
We will first derive a general formula. Let y  be one of  the influence factors. 
We have 
 

           ( ) ( ) ( ) ( ) ( )
y
dN

KedN
y

Ke
y
dN

SdN
y
S

y
C tTr

tTr

∂
∂

−
∂

∂
−

∂
∂

+
∂
∂

=
∂
∂ −⋅−

−⋅−
2)(

2

)(
1

1  
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But 
 

 
( ) ( )

y
dtTd

y
dd

y
dN HH

∂
∂













 −−
−=

∂
∂











−=

∂
∂ 2

2
22

12
2

22

2
exp

2
1

2
exp

2
1 σ

ππ
 

              ( ) ( )
y

dtT
tTd

d HH
HH

∂
∂








 −
−−










−= 2

222
22

1

2
1

2
expexp

2
exp

2
1 σ

σ
π

 

              ( )
y

d
tTr

K
tSd

∂
∂









−+


















−= 2

2
1 )(

lnexp
2

exp
2
1
π

 

 

                         ( )( )
y

d
tTr

K
tSd

∂
∂

−









−= 2

2
1 exp

)(
2

exp
2
1
π

 

 
It follows that: 
 

                ( ) ( ) ( ) ( ) ( )
y

tT
dSfdN

y
Ke

dN
y
S

y
C HHtTr

∂
−∂

+
∂

∂
−

∂
∂

=
∂
∂ −⋅− 22

12

)(

1
σ

         4.21 

 
Substituting in 4.21 we get the Greeks. 
                                 q.e.d 
 
 

Remarks 
 
The fractional Black-Sholes price of a european call option no longer depends 

only on tT − . 
A reason may be the fact that the fractional Brownian motion has long 

memory.  The price of an option at a moment [ ]Tt ,0∈   will depend on the stock price 
( )tS , but despite the classical Black-Sholes model, will take into consideration the 

evolution of the stock price in the period [ ]t,0 . This influence is reflected in the 
fractional Black-Sholes formula by the Hurst parameter H . 

Consider three moments Tttt ≤≤≤ 21  and two options with maturity T  one 
of them written on 1t  and the other one on 2t . In the classical Black-Sholes model the 
prices of the two options at the moment t  were equal. 

In the fractional Black-Sholes model the prices of the two options at the 
moment t  are no longer equal. Due to the long memory property, the price of the first 
option is also influenced by the evolution of the stock price in the period [ ]21, tt . 
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